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Continuum of weakly coupled oscillatory McKean neurons
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The McKean model of a neuron possesses a one-dimensional fast voltagelike variable and a slow recovery
variable. A recent geometric analysis of the singularly perturbed system has allowed an explicit construction of
its phase response curf®. Coombes, Physica D60, 173(2001)]. Here we use tools from coupled oscillator
theory to study weakly coupled networks of McKean neurons. Using numerical techniques, we show that the
McKean system has traveling wave phase-locked solutions consistent with that of a network of more biophysi-
cally detailed Hodgkin-Huxley neurons.
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Oscillatory behavior is observed in the normal function-the (unstable fixed point lie on the middle branch d{v),
ing of various nerve cells. Guided by the celebrated work ofwhere the neuron can oscillate. In the singular lipit 0,
Hodgkin and Huxley, mathematical descriptions based onhe dynamics evolves on the invariant manifolds described
systems of first-order nonlinear differential equations areby the left and right hand branches of thlew manifold w
now commonly used to model such cdlld. The investiga- =f(v)—wy+1. In this case, the period of oscillation is
tion of these physiologically important models is typically given by T=T_+ Tg, whereT,  are the times spent on the
hampered by both high dimensionality and nonlinearity.left and right branches of the slow manifold and are easily
Apart from a numerical analysis, progress in understandingalculated as
has come about using geometric technigizss] and tools

from coupled oscillator theory6—8]. By studying spiking T 1 In[(—BWﬁA)
==

neuron models, reduced by both geometric analysis and B | (—Bw;+A)]
phase descriptions, one can begin to classify collective be-

havior in terms of physiologically significant parameters, 1 [(—pw;+A+1)
such as those controlling the distributions of delays arising TR:E n{(_BWZ—JFAH) '

from synaptic processing. In this paper we pursue this ap-

proach for the McKean relaxation oscillator. Making exten-where =1+, A=l—wy—vg, W;=1—wy—a/2, andw,
sive use of Fourier representations, we show that a network yy, +1/2. Note that requiring the fixed point to be on the
of McKean neurons has dynamics consistent with that of thenidle branch of is a sufficient condition for the existence of

more biophysically detailed Hodgkin-Huxley model. oscillations, but in the limitu—0 this condition becomes
form single neuron can be reduced to a phase oscil[&lpmwhich

) evolves according to
po="Ff(v)—w—wy+I+eX(t),

do
— = Q+eR(OX(1).

W=0v—yW—vg, dt
where the nonlinear functiof(v) is given by Here ) =1/T and the phase response cufRRQ R(6) is
given explicitly in Ref.[9] as
—-v, v<al2 -
. Ri(6)=Qe’"T/(A—Bw,), 6e[0,07)
flv)={ v—a, al2<v<(l+a)l2 R(6)—R(0)=

—Be BT
1-v, v>(1+a)2. R0)=Be TTR(O), - 0eon ),
where =T /T, B=(A—Bw,)/(A+1—-Bw,), and
The variablev corresponds to a membrane potential while
is associated with the recovery property of a neuron. The R(6)=k(0)5( )+ k(67)5(6— 67).
parameters, u, Wqy, vo, andy may be considered as com-
binations of membrane reversal potentials and conductana@onstants<(0) and«(6;) are chosen such thaft) evolves
properties, whilel is a constant input current. TheX(t) smoothly, i.e., k(0)=R;(0)—R,(1) and «(67)=R,(6+)
term represents a time-varying external input signal of—R;(6;). The phase plane of the McKean model and a pe-
strengthe. In the absence of a time-varying inpué=0) riodic relaxation orbit are depicted in Fig. 1. Whenever the
there is a range dfvalues, determined by the condition that phase coordinat@ passes smoothly throughy, an instan-
taneous jump of the system in the,(v) plane occurs and
corresponds to the jump-up between the slow manifolds.
*Electronic address: M.G.Denman-Johnson@Iboro.ac.uk This signals the upswing of an action potential in the
Electronic address: S.Coombes@Iboro.ac.uk McKean model. Similarly, the downswing of an action po-
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The phase of the oscillator at positigr: R at timete R" is
given by 6(x,t) €[0,1). The term|y|/c represents a space
dependent delay arising from the finite propagation speed of
signals(action potentialsbetween neurons. Note thatep-
resents the ratio of the signal velocity to the natural fre-
quency of oscillation(). In the weak coupling regime each
oscillator approximately fires at its natural frequenQy
However, this relatively fast oscillation is slowly modulated
by a drift in the phases induced by the nonlocal synaptic
coupling to other neurons. The strength of interaction be-
tween oscillators a distangeapart is specified by the syn-
aptic footprintW(y), which we shall take to be of exponen-
tial form W(y) = eexp(—|y|)/2. In obtaining the equation for
the network phase dynamics it is assumed thiatsmall and
that the method of averaging appliee, for example, Ref.

FIG. 1. Phase plane of the McKean model showing the type 0f14]). Note that although the dynamics of the reduced phase
periodic orbit(solid ling) that occurs in the singular limiz=0.  model only shadows that of the true unaveraged system for
Note that the system jumps instantaneously from the left branch ofimes ofO(e 1), hyperbolic orbits of the phase model do, in
thev =0 nulicline (dashed lingto the right. The dotted line shows fact, correspond to hyperbolic orbits of the full system. We
the linear nullcline defined bw=0. In the phase coordinate, the assume throughtout this paper thais fixed and small and
system evolves smoothly. The model is said to fire whenever from now on choose a synaptic strength scale wherd..
passes throughy . When describing a system of neural oscillators, the biologi-
cal realism of the model typically resides in the phase-
interaction functiorH (6). This can be expressed as the con-
volution of the PRCR( ) with the synaptic inpuP(t):

tential occurs whem increases through=1 (with =1 and
6=0 identified and there is a corresponding jump-down be-
tween the slow manifolds.

To highlight the ability of the McKean model to caricature 1 (T
the behavior of the more biophysically complicated H(0)=—f R(t/T)P(t+ 6T)dt,
Hodgkin-Huxley model, we consider the recent work of TJo

Crook and co-workerfl0—12 concerning the dynamics of a 1
continuum model of weakly interacting phase oscillators. In-WhereT=Q"". We refer the reader to RefL5] for further
teractions in their model are nonlocal and are represented &liscussion about PRCs. The synaptic input is assumed to be
a spatial convolution involving some synaptic footprint ker- T periodic and of the form
nel. Interestingly, they show that synchrony can be stable for
localized excitatory coupling, but long range excitatory cou- p(t)zz p(t+jT), te[OT).
pling leads to an unstable synchronous state. It is not our i
intention to explore any particular result of Crook and co- i , )
workers but rather to illustrate that the McKean andH€re 7(t) describes the effects of synaptic processing and
Hodgkin-Huxley models have consistent network dynamicVil zbe assumed to take the form of an alpha functipft)
using the work of Crook and co-workers as a benchmark=«"t€xp(-at), for t=0 and(t)=0 for t<0. For ease of
Their work focuses partly on sinusoidal phase interactiof?Umerical _calculatlon of phase-_lnteractlon fun_ctlons and
functions thought to provide a first approximation for more PRCS, we introduce a Fourier series representatiof? (oy:
realistic Hodgkin-Huxley models and partly on the effects of 1 2k
. . . . ~ . o

synaptic processw_]gs_ee Ref[11], in particula). Here we P(t)=— 2 2 w)e K, w=—.
pursue the analysis in Refsdl0—-12 and pay close attention T &2 T
to the contributions from distributed synaptic delays along -
the lines described in Ref13]. We also present an explicit Here n(w) is the (half) Fourier transform ofy(t):
form for the phase interaction function that uses both the
Fourier coefficients of the PRC and the Fourier coefficients ~( )= f‘”e,im (t)dt=
of the synaptic response. This is different from the approach me 0 n
of Crook and co-workers who consider a Fourier expansion
of the phase-interaction function from the outset and do noUsing the PRC of the McKean model, we write the phase
make direct use of the Fourier transform of the synaptic reinteraction function in the form
sponse function.

Following Ref.[11], we consider a continuous network of H(8)—H(6)=BF(6;0,1— 67) +ef(1"VTF(9;1— 61,1),
weakly coupled phase oscillators in one spatial dimension

a2

(a+iow)?

described by where
d0(x,t) ® 1(b
— =Q+f W(Y)H(B(x+y,t)— 00x,t)—y|/c)dy. F(a;a,b)=ff R,()P(t+ 6T)dt,
e a
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(which is given in a closed form in Ref9]) and

H(6)=Q[k(0)P((6— 67)T)+ k(6r)P(6T)].
Introducing a Fourier series representation fof6;a,b)
=2 Fy(a,b)exp(2miké),

3 77(<Uk)
A_BWZ B+|(Uk

Fk(a:b): eb(ﬁ+iwk)_ea(ﬁ+iwk)],

means that we may also writé(0) == Hexp(2mik6):

Hy=BF(0,1— 67) + ef¢rDTE (1— 01,1) + Q%7 ( wy)

X[ k(0)e 27K 4 1 (07)].

When the PRC of an oscillator is not available in a closed © ;
form, it is always possible to obtain it numericallgee, for B
example, Ref[7]). Moreover, the PRC of a real neuron can
be found experimentally. In either case one may use a Foqi—0
ner re%reksgenta“on for the response functioR(6)  yyey model with an exponential synaptic footprint and @n
=3 Re"™", where the coefficient® are determined ei- fction synaptic response with=20. ¢ is the velocity of an ac-
ther from numerics or from experiments. The phase+ion potential andg is the phase gradient of a traveling wave:
InteraCtlon fUﬂCtIOﬂ then haS FOUI’IeI’ Coeff|C|entS g|Ven S|m'a0(X,t)/axz B The inset shows the same diagram for the McKean
ply by model. For lowc, the synchronous solution3E0) is unstable and
~ a stable traveling wave8#0) can be found. A grid of 250250
Hi=Qn(w)R_y. points is used.

o
=)
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N
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FIG. 2. Region of stabilityblack for the traveling wave solu-
n in the (8,c) parameter plane for the continuum Hodgkin-

The usefulness of this approach arises from the adoption of v ' o
Fourier representation for both the PRC and the synaptic\%here'gt =B~ 1le, Hi=2mikH, and
input current. In particular, it allows one to deal with arbi-

. ) . - R * : 1
trary synaptic kernels, for which the integral defining the W(p):J W(y)ePYdy= =
phase-interaction function cannot be done in a closed form. 0 2
Rather than resort to numerical quadrature, the representa-
tion we use is an efficient alternative, especially if the Fou-The analysis of phase-locked and traveling wave states in
rier coefficients of the synaptic response are known to decagietworks of weakly coupled McKean relaxation oscillators
fast (allowing early truncation of the sum over Fourier can now be performed and compared with those in a corre-

1-ip”

modes. sponding Hodgkin-Huxley network. To ensure that the two
The phase oscillator network has a one-parameter familynodels behave qualitatively the same, we chooge w,

of traveling wave solutions defined bg(x,t)=0t+px, =0, 1=0.5, y=0.5, anda=0.32 for the McKean model.

where This ensures that the duration of the action potential in each

model is roughly the same as compared to their intrinsic
~ * period of oscillation. Note that it is the parameterthat
Q=0+ f_xW(y)H(By—lyVC)dy- strongly influences the relative spike duration in this model
and this is the one we have adjustedmpared to Ref9])
A linear stability analysis shows that these solutions areso as to bring the behavior of the McKean model more in
stable if R&(p)<0, where line with that of the Hodgkin-Huxley model. Parameter val-
ues for the Hodgkin-Huxley model are the same aflf|
* , i with an external drive of =20. The PRC of the Hodgkin-
Mp)= f_wW(y)H (By—lylre)le!™~1]dy. Huxley model is obtained using XFAR6]. We fix an origin
for the PRC of the Hodgkin-Huxley model by defining spike
Although the neutrally stable modg0)=0 exists, it repre- times to occur whenever the voltage variable increases
sents a perturbation by constant phase shifts and so is ettirough a threshold of-57.4 mV. This is the point at which
cluded in the definition of linear stability. Using the property the PRC of the Hodgkin-Huxley model has its maximal
W(y)=W(|yl|), it is simple to show that value.
For fast rise times, in the sense thdt) —«, we find that
for both models the synchronous stae<0) is unstable for
small c and stable traveling waves appear. This is predicted
using Fig. 2 where we present the stability regions of the
+W(—p+27kB_)—W(27kB_)], traveling wave solutions in the3;c) parameter plane for the

x<|o>=2k Hi[W(p+27kB.)—W(2mkB,)
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Hodgkin-Huxley and McKean models. The small discrep- 10
ancy between the value affor which the synchronous so-
lution changes stability can be traced back to the fact that the
relative duration of action potentials between the two models 8
is slightly different. Although the duration of the action po-
tential in the McKean model can be adjusted further by vary-
ing a, this is not expected to lead to significant increased ¢
agreement. This is because, unlike the Hodgkin-Huxleyg
model, the McKean model is restricted to some singular limit
(n=0) where the rise and fall times of the action potential 4
are instantaneous.

Crook et al. [11] have suggested that the change in the
stability of the synchronous solution, as the propagation de- 2
lay grows, is consistent with the oscillatory behavior ob-
served in both visual cortex, showing a tendency towards
synchrony, and olfactory cortex, tending to produce traveling o 0 oS o7 0% o5 :
oscillatory waves; the latter has long-range connections anc ’ ’ B
hence longer axonal delays. The stability diagrams for much ) - ]
slower synapses are produced in Fig. 3. Here, we see that FIQ. 3. Region of stabilityblack) for the travel!ng wave squ_—
both models once again give qualitatively similar predic-1o" In the (8.c) parameter plane for the continuum Hodgkin-
tions: namely that for slow synapses it is even easier to deUXIey model with an exponential synaptic footprint and an

s S . function synaptic response with=1. The inset shows the same
stabilize a synchronous solut|0n_|n favor of a traveling Wave‘diagram for the McKean model. The value ot which the syn-
We note that the value af at which th? SynChrono.us solu- chronous solution changes from unstable to stable increases with
tion changes from unstable to stable increases with decreaaécreasingl_ A grid of 250 250 points is used.
ing a. Also, the small amount of fine structure seen on the
lower border of the McKean stability diagrafig. 2 insel  ent, However, we should emphasize the two major assump-
vanishes with increasing. This fine structure is related t0 tions of our analysisstrong relaxationand weak coupling
the nonsmooth behavior of the model seen in the singulafhe PRC of the McKean model that we have used is valid
limit :“_:0- . only in the singular limit where the voltage variable operates
__In this paper we have shown that the dynamics of weaklyy 3 mych faster time scale than the recovery variable. How-
interacting McKean relaxation oscillators captures the typ&yer, by the Fenichel persistence theort], results ob-
of phase-locked behavior found in a corresponding Hodgkiniained in the singular limit ¢ = 0) are expected to extend to
Huxley network. The assumption of weak coupling has alyj¢ nonsingular limit { small.

lowed us to bring to bear the powerful machinery of the

coupled oscillator theory. For both models, we have made The authors would like to thank Steven Webb and Sarah
use of Fourier techniques for the practical calculation ofbenman-Johnson for helpful comments made during the
phase-interaction functions. This has more readily allowed ugreparation of this manuscript. M.D.J. was supported finan-
to establish that the phase-locked behavior of weaklyially by the Engineering and Physical Sciences Research
coupled McKean and Hodgkin-Huxley networks is consis-Council (UK).
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