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Continuum of weakly coupled oscillatory McKean neurons
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The McKean model of a neuron possesses a one-dimensional fast voltagelike variable and a slow recovery
variable. A recent geometric analysis of the singularly perturbed system has allowed an explicit construction of
its phase response curve@S. Coombes, Physica D160, 173~2001!#. Here we use tools from coupled oscillator
theory to study weakly coupled networks of McKean neurons. Using numerical techniques, we show that the
McKean system has traveling wave phase-locked solutions consistent with that of a network of more biophysi-
cally detailed Hodgkin-Huxley neurons.
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Oscillatory behavior is observed in the normal functio
ing of various nerve cells. Guided by the celebrated work
Hodgkin and Huxley, mathematical descriptions based
systems of first-order nonlinear differential equations
now commonly used to model such cells@1#. The investiga-
tion of these physiologically important models is typica
hampered by both high dimensionality and nonlinear
Apart from a numerical analysis, progress in understand
has come about using geometric techniques@2–5# and tools
from coupled oscillator theory@6–8#. By studying spiking
neuron models, reduced by both geometric analysis
phase descriptions, one can begin to classify collective
havior in terms of physiologically significant paramete
such as those controlling the distributions of delays aris
from synaptic processing. In this paper we pursue this
proach for the McKean relaxation oscillator. Making exte
sive use of Fourier representations, we show that a netw
of McKean neurons has dynamics consistent with that of
more biophysically detailed Hodgkin-Huxley model.

The equations for a single McKean oscillator take t
form

m v̇5 f ~v !2w2w01I 1eX~ t !,

ẇ5v2gw2v0 ,

where the nonlinear functionf (v) is given by

f ~v !5H 2v, v,a/2

v2a, a/2,v,~11a!/2

12v, v.~11a!/2.

The variablev corresponds to a membrane potential whilew
is associated with the recovery property of a neuron. T
parametersa, m, w0 , v0, andg may be considered as com
binations of membrane reversal potentials and conducta
properties, whileI is a constant input current. TheeX(t)
term represents a time-varying external input signal
strengthe. In the absence of a time-varying input (e50)
there is a range ofI values, determined by the condition th
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the ~unstable! fixed point lie on the middle branch off (v),
where the neuron can oscillate. In the singular limitm→0,
the dynamics evolves on the invariant manifolds describ
by the left and right hand branches of theslow manifold w
5 f (v)2w01I . In this case, the period of oscillation i
given byT5TL1TR , whereTL,R are the times spent on th
left and right branches of the slow manifold and are eas
calculated as

TL5
1

b
lnF ~2bw21A!

~2bw11A!G ,
TR5

1

b
lnF ~2bw11A11!

~2bw21A11!G ,
whereb511g, A5I 2w02v0 , w15I 2w02a/2, andw2
5w111/2. Note that requiring the fixed point to be on th
midle branch off is a sufficient condition for the existence o
oscillations, but in the limitm→0 this condition becomes
necessary. For weak coupling (e→0) the dynamics of a
single neuron can be reduced to a phase oscillator@6#, which
evolves according to

du

dt
5V1eR~u!X~ t !.

Here V51/T and the phase response curve~PRC! R(u) is
given explicitly in Ref.@9# as

R~u!2R̂~u!5H R1~u!5VebuT/~A2bw2!, uP@0,uT!

R2~u!5Be2buTTR1~u!, uP~uT,1!,

whereuT5TL /T, B5(A2bw2)/(A112bw1), and

R̂~u!5k~0!d~u!1k~uT!d~u2uT!.

Constantsk(0) andk(uT) are chosen such thatu(t) evolves
smoothly, i.e., k(0)5R1(0)2R2(1) and k(uT)5R2(uT)
2R1(uT). The phase plane of the McKean model and a
riodic relaxation orbit are depicted in Fig. 1. Whenever t
phase coordinateu passes smoothly throughuT , an instan-
taneous jump of the system in the (v,w) plane occurs and
corresponds to the jump-up between the slow manifo
This signals the upswing of an action potential in t
McKean model. Similarly, the downswing of an action p
©2003 The American Physical Society03-1
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tential occurs whenu increases throughu51 ~with u51 and
u50 identified! and there is a corresponding jump-down b
tween the slow manifolds.

To highlight the ability of the McKean model to caricatu
the behavior of the more biophysically complicat
Hodgkin-Huxley model, we consider the recent work
Crook and co-workers@10–12# concerning the dynamics of
continuum model of weakly interacting phase oscillators.
teractions in their model are nonlocal and are represente
a spatial convolution involving some synaptic footprint ke
nel. Interestingly, they show that synchrony can be stable
localized excitatory coupling, but long range excitatory co
pling leads to an unstable synchronous state. It is not
intention to explore any particular result of Crook and c
workers but rather to illustrate that the McKean a
Hodgkin-Huxley models have consistent network dynam
using the work of Crook and co-workers as a benchma
Their work focuses partly on sinusoidal phase interact
functions thought to provide a first approximation for mo
realistic Hodgkin-Huxley models and partly on the effects
synaptic processing~see Ref.@11#, in particular!. Here we
pursue the analysis in Refs.@10–12# and pay close attention
to the contributions from distributed synaptic delays alo
the lines described in Ref.@13#. We also present an explic
form for the phase interaction function that uses both
Fourier coefficients of the PRC and the Fourier coefficie
of the synaptic response. This is different from the appro
of Crook and co-workers who consider a Fourier expans
of the phase-interaction function from the outset and do
make direct use of the Fourier transform of the synaptic
sponse function.

Following Ref.@11#, we consider a continuous network o
weakly coupled phase oscillators in one spatial dimens
described by

]u~x,t !

]t
5V1E

2`

`

W~y!H~u~x1y,t !2u~x,t !2uyu/c!dy.

FIG. 1. Phase plane of the McKean model showing the type
periodic orbit ~solid line! that occurs in the singular limitm50.
Note that the system jumps instantaneously from the left branc

the v̇50 nullcline ~dashed line! to the right. The dotted line show

the linear nullcline defined byẇ50. In the phase coordinate, th
system evolves smoothly. The model is said to fire wheneveu
passes throughuT .
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The phase of the oscillator at positionxPR at timetPR1 is
given by u(x,t)P@0,1). The termuyu/c represents a spac
dependent delay arising from the finite propagation spee
signals~action potentials! between neurons. Note thatc rep-
resents the ratio of the signal velocity to the natural f
quency of oscillationV. In the weak coupling regime eac
oscillator approximately fires at its natural frequencyV.
However, this relatively fast oscillation is slowly modulate
by a drift in the phases induced by the nonlocal synap
coupling to other neurons. The strength of interaction
tween oscillators a distancey apart is specified by the syn
aptic footprintW(y), which we shall take to be of exponen
tial form W(y)5eexp(2uyu)/2. In obtaining the equation fo
the network phase dynamics it is assumed thate is small and
that the method of averaging applies~see, for example, Ref
@14#!. Note that although the dynamics of the reduced ph
model only shadows that of the true unaveraged system
times ofO(e21), hyperbolic orbits of the phase model do,
fact, correspond to hyperbolic orbits of the full system. W
assume throughtout this paper thate is fixed and small and
from now on choose a synaptic strength scale wheree51.
When describing a system of neural oscillators, the biolo
cal realism of the model typically resides in the phas
interaction functionH(u). This can be expressed as the co
volution of the PRCR(u) with the synaptic inputP(t):

H~u!5
1

TE0

T

R~ t/T!P~ t1uT!dt,

whereT5V21. We refer the reader to Ref.@15# for further
discussion about PRCs. The synaptic input is assumed t
T periodic and of the form

P~ t !5(
j

h~ t1 jT !, tP@0,T!.

Here h(t) describes the effects of synaptic processing a
will be assumed to take the form of an alpha functionh(t)
5a2texp(2at), for t>0 andh(t)50 for t,0. For ease of
numerical calculation of phase-interaction functions a
PRCs, we introduce a Fourier series representation forP(t):

P~ t !5
1

T (
kPZ

h̃~vk!e
ivkt, vk5

2pk

T
.

Here h̃(v) is the ~half! Fourier transform ofh(t):

h̃~v!5E
0

`

e2 ivth~ t !dt5
a2

~a1 iv!2
.

Using the PRC of the McKean model, we write the pha
interaction function in the form

H~u!2Ĥ~u!5BF~u;0,12uT!1eb(uT21)TF~u;12uT,1!,

where

F~u;a,b!5
1

TEa

b

R1~ t !P~ t1uT!dt,

f
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~which is given in a closed form in Ref.@9#! and

Ĥ~u!5V@k~0!P~~u2uT!T!1k~uT!P~uT!#.

Introducing a Fourier series representation forF(u;a,b)
5(kFk(a,b)exp(2piku),

Fk~a,b!5
V3

A2bw2

h̃~vk!

b1 ivk
@eb(b1 ivk)2ea(b1 ivk)#,

means that we may also writeH(u)5(kHkexp(2piku):

Hk5BFk~0,12uT!1eb(uT21)TFk~12uT,1!1V2h̃~vk!

3@k~0!e22p ikuT1k~uT!#.

When the PRC of an oscillator is not available in a clos
form, it is always possible to obtain it numerically~see, for
example, Ref.@7#!. Moreover, the PRC of a real neuron ca
be found experimentally. In either case one may use a F
rier representation for the response function,R(u)
5(kRke

2p iku, where the coefficientsRk are determined ei-
ther from numerics or from experiments. The pha
interaction function then has Fourier coefficients given s
ply by

Hk5Vh̃~vk!R2k .

The usefulness of this approach arises from the adoption
Fourier representation for both the PRC and the syna
input current. In particular, it allows one to deal with arb
trary synaptic kernels, for which the integral defining t
phase-interaction function cannot be done in a closed fo
Rather than resort to numerical quadrature, the represe
tion we use is an efficient alternative, especially if the Fo
rier coefficients of the synaptic response are known to de
fast ~allowing early truncation of the sum over Fouri
modes!.

The phase oscillator network has a one-parameter fam
of traveling wave solutions defined byu(x,t)5Ṽt1bx,
where

Ṽ5V1E
2`

`

W~y!H~by2uyu/c!dy.

A linear stability analysis shows that these solutions
stable if Rel(p),0, where

l~p!5E
2`

`

W~y!H8~by2uyu/c!@eipy21#dy.

Although the neutrally stable model(0)50 exists, it repre-
sents a perturbation by constant phase shifts and so is
cluded in the definition of linear stability. Using the proper
W(y)5W(uyu), it is simple to show that

l~p!5(
k

Hk8@Ŵ~p12pkb1!2Ŵ~2pkb1!

1Ŵ~2p12pkb2!2Ŵ~2pkb2!#,
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whereb656b21/c, Hk852p ikHk , and

Ŵ~p!5E
0

`

W~y!eipydy5
1

2

1

12 ip
.

The analysis of phase-locked and traveling wave state
networks of weakly coupled McKean relaxation oscillato
can now be performed and compared with those in a co
sponding Hodgkin-Huxley network. To ensure that the tw
models behave qualitatively the same, we choosev05w0
50, I 50.5, g50.5, anda50.32 for the McKean model
This ensures that the duration of the action potential in e
model is roughly the same as compared to their intrin
period of oscillation. Note that it is the parametera that
strongly influences the relative spike duration in this mo
and this is the one we have adjusted~compared to Ref.@9#!
so as to bring the behavior of the McKean model more
line with that of the Hodgkin-Huxley model. Parameter va
ues for the Hodgkin-Huxley model are the same as in@15#
with an external drive ofI 520. The PRC of the Hodgkin-
Huxley model is obtained using XPP@16#. We fix an origin
for the PRC of the Hodgkin-Huxley model by defining spik
times to occur whenever the voltage variable increa
through a threshold of257.4 mV. This is the point at which
the PRC of the Hodgkin-Huxley model has its maxim
value.

For fast rise times, in the sense thata/V→`, we find that
for both models the synchronous state (b50) is unstable for
small c and stable traveling waves appear. This is predic
using Fig. 2 where we present the stability regions of
traveling wave solutions in the (b,c) parameter plane for the

FIG. 2. Region of stability~black! for the traveling wave solu-
tion in the (b,c) parameter plane for the continuum Hodgki
Huxley model with an exponential synaptic footprint and ana
function synaptic response witha520. c is the velocity of an ac-
tion potential andb is the phase gradient of a traveling wav
]u(x,t)/]x5b. The inset shows the same diagram for the McKe
model. For lowc, the synchronous solution (b50) is unstable and
a stable traveling wave (bÞ0) can be found. A grid of 2503250
points is used.
3-3
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Hodgkin-Huxley and McKean models. The small discre
ancy between the value ofc for which the synchronous so
lution changes stability can be traced back to the fact that
relative duration of action potentials between the two mod
is slightly different. Although the duration of the action p
tential in the McKean model can be adjusted further by va
ing a, this is not expected to lead to significant increas
agreement. This is because, unlike the Hodgkin-Hux
model, the McKean model is restricted to some singular li
(m50) where the rise and fall times of the action potent
are instantaneous.

Crook et al. @11# have suggested that the change in
stability of the synchronous solution, as the propagation
lay grows, is consistent with the oscillatory behavior o
served in both visual cortex, showing a tendency towa
synchrony, and olfactory cortex, tending to produce travel
oscillatory waves; the latter has long-range connections
hence longer axonal delays. The stability diagrams for m
slower synapses are produced in Fig. 3. Here, we see
both models once again give qualitatively similar pred
tions: namely that for slow synapses it is even easier to
stabilize a synchronous solution in favor of a traveling wa
We note that the value ofc at which the synchronous solu
tion changes from unstable to stable increases with decr
ing a. Also, the small amount of fine structure seen on
lower border of the McKean stability diagram~Fig. 2 inset!
vanishes with increasinga. This fine structure is related t
the nonsmooth behavior of the model seen in the sing
limit m50.

In this paper we have shown that the dynamics of wea
interacting McKean relaxation oscillators captures the ty
of phase-locked behavior found in a corresponding Hodgk
Huxley network. The assumption of weak coupling has
lowed us to bring to bear the powerful machinery of t
coupled oscillator theory. For both models, we have m
use of Fourier techniques for the practical calculation
phase-interaction functions. This has more readily allowed
to establish that the phase-locked behavior of wea
coupled McKean and Hodgkin-Huxley networks is cons
ag
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tent. However, we should emphasize the two major assu
tions of our analysis:strong relaxationand weak coupling.
The PRC of the McKean model that we have used is va
only in the singular limit where the voltage variable opera
on a much faster time scale than the recovery variable. H
ever, by the Fenichel persistence theorem@17#, results ob-
tained in the singular limit (m50) are expected to extend t
the nonsingular limit (m small!.

The authors would like to thank Steven Webb and Sa
Denman-Johnson for helpful comments made during
preparation of this manuscript. M.D.J. was supported fin
cially by the Engineering and Physical Sciences Resea
Council ~UK!.

FIG. 3. Region of stability~black! for the traveling wave solu-
tion in the (b,c) parameter plane for the continuum Hodgki
Huxley model with an exponential synaptic footprint and ana
function synaptic response witha51. The inset shows the sam
diagram for the McKean model. The value ofc at which the syn-
chronous solution changes from unstable to stable increases
decreasinga. A grid of 2503250 points is used.
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